Introduction to eBPF
eBPF (extended Berkeley Packet Filter) represents the most significant advancement in Linux observability since dtrace. It enables programmable kernel-level monitoring without modifying kernel source code or loading kernel modules.
What is eBPF?
eBPF is a revolutionary technology that allows you to run sandboxed programs in the Linux kernel without changing kernel source code or loading kernel modules. Think of it as JavaScript for the kernel - safe, efficient, and incredibly powerful.
Key Benefits:
- Zero Instrumentation: Monitor without modifying applications
- Kernel-Level Visibility: See everything happening in your system
- Production Safe: Verified programs with bounded execution
- High Performance: Minimal overhead (<5% typically)
History and Evolution
Originally introduced in Linux 3.18 (2014), eBPF has evolved from a simple packet filtering mechanism to a comprehensive kernel programming framework. Major milestones include:
- 2014: eBPF introduced in Linux 3.18
- 2016: BPF Type Format (BTF) added for better introspection
- 2018: BPF-to-BPF function calls enabled complex programs
- 2020: BPF LSM (Linux Security Module) framework
- 2023: Production adoption by major tech companies
eBPF vs Traditional Monitoring
Aspect | eBPF Monitoring | Traditional APM |
---|---|---|
Code Changes | None required | Extensive instrumentation |
Performance Impact | <5% overhead | 5-15% overhead |
Deployment Time | Minutes | Days to weeks |
Language Support | All languages | SDK-supported only |
How eBPF Works
Understanding eBPF's architecture is crucial for effective implementation. Let's explore the core components and execution model.
Architecture Overview
┌─────────────────────────────────────────────────────┐ │ User Space │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐│ │ │ BPF Program │ │ BPF Maps │ │Control Apps ││ │ │ (C/Rust) │ │ (Storage) │ │ (Loaders) ││ │ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘│ │ │ │ │ │ ├─────────┼─────────────────┼─────────────────┼───────┤ │ │ System Call Interface │ │ ├─────────▼─────────────────▼─────────────────▼───────┤ │ Kernel Space │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐│ │ │BPF Verifier │ │ BPF Runtime │ │ BPF Helpers ││ │ └─────────────┘ └──────┬──────┘ └─────────────┘│ │ │ │ │ ┌───────────────────────▼──────────────────────┐ │ │ │ Kernel Subsystems & Hooks │ │ │ │ Network │ Tracing │ Security │ Perf │ │ │ └──────────────────────────────────────────────┘ │ └─────────────────────────────────────────────────────┘
Core Components
1. BPF Programs
Small programs written in restricted C that run in kernel space. They're compiled to BPF bytecode and verified before execution.
// Example: Simple packet counter #include <linux/bpf.h> #include <bpf/bpf_helpers.h> struct { __uint(type, BPF_MAP_TYPE_HASH); __type(key, __u32); __type(value, __u64); __uint(max_entries, 1024); } packet_count SEC(".maps"); SEC("xdp") int count_packets(struct xdp_md *ctx) { __u32 key = 0; __u64 *count = bpf_map_lookup_elem(&packet_count, &key); if (count) { __sync_fetch_and_add(count, 1); } return XDP_PASS; }
2. BPF Maps
Key-value data structures for storing state and communicating between kernel and user space. Types include:
- Hash Maps: General purpose key-value storage
- Arrays: Fast indexed access
- Ring Buffers: Efficient event streaming
- LRU Maps: Automatic eviction of old entries
- Stack/Queue: LIFO/FIFO data structures
3. BPF Verifier
The kernel component that ensures BPF programs are safe to run. It performs:
- • Control flow analysis: No loops or recursion
- • Memory safety: Valid pointer access only
- • Bounded execution: Programs must terminate
- • Privilege checks: Appropriate capabilities required
Execution Flow
- 1Program Compilation: C code compiled to BPF bytecode using LLVM
- 2Loading: Bytecode loaded into kernel via bpf() syscall
- 3Verification: Verifier ensures program safety
- 4JIT Compilation: Bytecode converted to native machine code
- 5Attachment: Program attached to kernel hook points
- 6Execution: Runs when events occur at hook points
eBPF Monitoring Capabilities
eBPF enables comprehensive monitoring across all layers of your infrastructure. Here's what you can observe with eBPF technology.
Network Monitoring
Packet-Level Analysis
- • TCP/UDP flow tracking
- • Connection establishment/teardown
- • Packet drops and retransmissions
- • Latency measurements
- • Bandwidth utilization
Application Protocol Analysis
- • HTTP/HTTPS request tracking
- • gRPC method calls
- • Database query monitoring
- • Message queue operations
- • Custom protocol decoding
System Performance
// CPU profiling with eBPF SEC("perf_event") int profile_cpu(struct bpf_perf_event_data *ctx) { u32 pid = bpf_get_current_pid_tgid() >> 32; u64 ts = bpf_ktime_get_ns(); struct stack_trace_t *trace; trace = bpf_map_lookup_elem(&stack_traces, &pid); if (trace) { trace->kernel_stack_id = bpf_get_stackid(ctx, &kernel_stacks, KERN_STACKID_FLAGS); trace->user_stack_id = bpf_get_stackid(ctx, &user_stacks, USER_STACKID_FLAGS); trace->timestamp = ts; } return 0; }
Application Tracing
eBPF can trace application behavior without modifying code:
Database Queries
MySQL, PostgreSQL, MongoDB wire protocol analysis
HTTP Requests
Full request/response capture with timing
Function Calls
User-space function entry/exit tracing
Security Monitoring
Security Use Cases
Runtime Security
- • Process execution monitoring
- • File access tracking
- • Network connection auditing
- • Privilege escalation detection
Threat Detection
- • Suspicious syscall patterns
- • Kernel rootkit detection
- • Container escape attempts
- • MITRE ATT&CK mapping
Container & Kubernetes
eBPF provides deep visibility into containerized environments:
- Container Metrics: CPU, memory, network, and I/O per container
- Service Mesh: Sidecar-free service communication tracking
- Pod Security: Runtime policy enforcement and compliance
- Resource Tracking: Cross-namespace resource utilization
Implementing eBPF Monitoring
Let's walk through implementing eBPF monitoring in your infrastructure, from environment setup to production deployment.
Prerequisites
System Requirements
- • Linux Kernel: 4.14+ (5.4+ recommended for BTF)
- • Kernel Headers: Matching your kernel version
- • Compiler: Clang/LLVM 10+ for BPF compilation
- • Tools: bpftool, libbpf, bcc or bpftrace
- • Permissions: CAP_SYS_ADMIN or root access
Development Environment Setup
# Install dependencies on Ubuntu/Debian sudo apt-get update sudo apt-get install -y clang llvm libelf-dev libbpf-dev linux-headers-$(uname -r) bpftool linux-tools-$(uname -r) # Install BCC (BPF Compiler Collection) sudo apt-get install -y bpfcc-tools linux-headers-$(uname -r) # Install bpftrace sudo apt-get install -y bpftrace # Verify installation bpftool version bpftrace --version
Your First eBPF Program
Let's create a simple HTTP request monitor:
// http_monitor.bpf.c #include <vmlinux.h> #include <bpf/bpf_helpers.h> #include <bpf/bpf_tracing.h> #include <bpf/bpf_core_read.h> #define MAX_MSG_SIZE 256 struct event { u32 pid; u32 uid; u8 comm[16]; u8 msg[MAX_MSG_SIZE]; }; struct { __uint(type, BPF_MAP_TYPE_RINGBUF); __uint(max_entries, 256 * 1024); } events SEC(".maps"); SEC("uprobe/SSL_write") int trace_ssl_write(struct pt_regs *ctx) { struct event *e; const char *buf = (const char *)PT_REGS_PARM2(ctx); e = bpf_ringbuf_reserve(&events, sizeof(*e), 0); if (!e) return 0; e->pid = bpf_get_current_pid_tgid() >> 32; e->uid = bpf_get_current_uid_gid() & 0xFFFFFFFF; bpf_get_current_comm(&e->comm, sizeof(e->comm)); bpf_probe_read_user_str(&e->msg, sizeof(e->msg), buf); bpf_ringbuf_submit(e, 0); return 0; } char LICENSE[] SEC("license") = "GPL";
User-Space Loader
// loader.go package main import ( "bytes" "encoding/binary" "fmt" "log" "os" "os/signal" "github.com/cilium/ebpf/link" "github.com/cilium/ebpf/perf" "github.com/cilium/ebpf/rlimit" ) //go:generate go run github.com/cilium/ebpf/cmd/bpf2go -cc clang -type event bpf http_monitor.bpf.c func main() { // Remove memory limit for eBPF if err := rlimit.RemoveMemlock(); err != nil { log.Fatal(err) } // Load pre-compiled eBPF programs objs := bpfObjects{} if err := loadBpfObjects(&objs, nil); err != nil { log.Fatalf("loading objects: %v", err) } defer objs.Close() // Attach to SSL_write ex, err := link.OpenExecutable("/usr/lib/x86_64-linux-gnu/libssl.so.1.1") if err != nil { log.Fatal(err) } l, err := ex.Uprobe("SSL_write", objs.TraceSslWrite, nil) if err != nil { log.Fatal(err) } defer l.Close() // Read events from ring buffer rd, err := perf.NewReader(objs.Events, os.Getpagesize()) if err != nil { log.Fatal(err) } defer rd.Close() // Handle Ctrl-C sig := make(chan os.Signal, 1) signal.Notify(sig, os.Interrupt) fmt.Println("Monitoring HTTPS requests... Press Ctrl-C to exit") go func() { <-sig os.Exit(0) }() // Process events var event bpfEvent for { record, err := rd.Read() if err != nil { log.Fatal(err) } if err := binary.Read(bytes.NewBuffer(record.RawSample), binary.LittleEndian, &event); err != nil { continue } fmt.Printf("[%d] %s: %s ", event.Pid, string(event.Comm[:]), string(event.Msg[:])) } }
Using HyperObserve
While building custom eBPF programs is powerful, HyperObserve provides production-ready eBPF monitoring out of the box:
Quick Start with HyperObserve
# Install HyperObserve agent curl -sSL https://hyperobserve.com/install.sh | sh # Configure with your license key hyperobserve configure --key YOUR_LICENSE_KEY # Start monitoring sudo systemctl start hyperobserve sudo systemctl enable hyperobserve # Verify it's working hyperobserve status
HyperObserve automatically deploys optimized eBPF programs for:
- ✓ Application performance monitoring
- ✓ Network flow analysis
- ✓ Database query tracking
- ✓ Container monitoring
- ✓ Security threat detection
Production Deployment
Deployment Checklist
- Verify kernel version compatibility
- Test in staging environment first
- Monitor resource usage during rollout
- Configure appropriate map sizes
- Set up log rotation and storage
Kubernetes Deployment
apiVersion: apps/v1 kind: DaemonSet metadata: name: ebpf-monitor spec: selector: matchLabels: app: ebpf-monitor template: spec: hostNetwork: true hostPID: true containers: - name: monitor image: hyperobserve/agent:latest securityContext: privileged: true volumeMounts: - name: sys mountPath: /sys - name: headers mountPath: /lib/modules volumes: - name: sys hostPath: path: /sys - name: headers hostPath: path: /lib/modules
Performance Considerations
eBPF is designed for production use with minimal overhead. Understanding performance characteristics helps optimize your monitoring deployment.
Performance Metrics
Typical overhead with full monitoring enabled
Processing capacity per CPU core
Added latency to monitored operations
Optimization Techniques
1. Sampling Strategies
// Adaptive sampling based on load #define SAMPLE_RATE 10 // Sample 1 in 10 events SEC("kprobe/tcp_sendmsg") int trace_tcp_send(struct pt_regs *ctx) { // Simple sampling if (bpf_get_prandom_u32() % SAMPLE_RATE != 0) return 0; // Or time-based sampling u64 now = bpf_ktime_get_ns(); static u64 last_sample = 0; if (now - last_sample < 1000000) // 1ms minimum return 0; last_sample = now; // ... rest of monitoring logic }
2. Map Optimization
Choose the right map types and sizes for your use case:
Map Type | Use Case | Performance |
---|---|---|
ARRAY | Fixed-size counters | O(1) - Fastest |
HASH | Dynamic key-value | O(1) avg |
LRU_HASH | Bounded memory | O(1) + eviction |
RINGBUF | Event streaming | Lock-free |
3. Program Optimization
Best Practices
- • Early Returns: Exit fast for uninteresting events
- • Bounded Loops: Use #pragma unroll for loops
- • Stack Usage: Keep stack usage under 512 bytes
- • Helper Calls: Minimize expensive helper functions
- • Map Lookups: Cache repeated lookups in variables
Benchmarking Results
Real-world performance comparison between eBPF and traditional monitoring:
Security and Safety
eBPF's security model ensures safe execution in production kernels. Understanding these guarantees is crucial for confident deployment.
Security Architecture
eBPF Security Layers
Verifier Guarantees
The eBPF verifier ensures programs cannot:
- Access arbitrary kernel memory
- Create infinite loops or unbounded recursion
- Leak kernel pointers to userspace
- Perform out-of-bounds memory access
- Call arbitrary kernel functions
Security Use Cases
Runtime Protection
- • Process behavior monitoring
- • Syscall filtering and auditing
- • Network policy enforcement
- • File integrity monitoring
- • Container escape detection
Threat Detection
- • Kernel rootkit detection
- • Cryptomining detection
- • Privilege escalation attempts
- • Lateral movement tracking
- • Data exfiltration monitoring
Security Best Practices
Production Security Checklist
Real-World Use Cases
Organizations worldwide use eBPF monitoring to solve complex observability challenges. Here are proven patterns and success stories.
Case Study: E-Commerce Platform
Challenge
A major e-commerce platform with 500+ microservices struggled with:
- • 15% performance overhead from APM agents
- • Incomplete visibility across polyglot services
- • 3-month deployment time for new monitoring
Solution with eBPF
- ✓ Deployed HyperObserve eBPF monitoring in 2 days
- ✓ Reduced monitoring overhead to <5%
- ✓ Achieved 100% service coverage automatically
- ✓ Detected performance bottlenecks in database queries
Case Study: Financial Services
Requirements
- • Sub-millisecond latency monitoring
- • Regulatory compliance for all transactions
- • Zero application modification allowed
- • 99.999% uptime requirement
eBPF Implementation
// Custom eBPF program for transaction monitoring SEC("uprobe/process_transaction") int trace_transaction(struct pt_regs *ctx) { struct transaction_event event = {}; // Capture transaction details event.timestamp = bpf_ktime_get_ns(); event.tid = bpf_get_current_pid_tgid(); // Read transaction ID and amount bpf_probe_read_user(&event.tx_id, sizeof(event.tx_id), (void *)PT_REGS_PARM1(ctx)); bpf_probe_read_user(&event.amount, sizeof(event.amount), (void *)PT_REGS_PARM2(ctx)); // Check for anomalies if (event.amount > THRESHOLD) { event.flags |= ANOMALY_HIGH_VALUE; } // Submit to compliance system bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, &event, sizeof(event)); return 0; }
Results achieved:
- ✓ 100% transaction visibility with 0.1ms overhead
- ✓ Real-time fraud detection with ML integration
- ✓ Compliance audit trail with cryptographic proof
- ✓ Zero application changes required
Common Patterns
Database Performance
Monitor all database queries without agents:
- • Query latency distribution
- • Slow query detection
- • Connection pool monitoring
- • Transaction deadlock detection
Kubernetes Observability
Container and pod-level insights:
- • Service mesh without sidecars
- • Cross-namespace communication
- • Resource usage per container
- • Network policy violations
Industry Adoption
eBPF in Production
Best Practices
Follow these proven practices for successful eBPF monitoring deployment and operations.
Development Best Practices
Code Quality
- Use CO-RE (Compile Once - Run Everywhere)
- Implement proper error handling
- Add comprehensive logging
- Version your BPF programs
- Write unit tests for userspace code
Performance
- Profile BPF programs in development
- Use per-CPU maps when possible
- Implement sampling for high-frequency events
- Batch map operations
- Monitor BPF program overhead
Operational Excellence
Production Checklist
Deployment
- □ Gradual rollout strategy
- □ Rollback procedures documented
- □ Performance baselines established
- □ Alert thresholds configured
- □ Runbooks created
Monitoring
- □ BPF program metrics tracked
- □ Map usage monitored
- □ Event rates dashboarded
- □ Error rates alerted
- □ Resource usage tracked
Troubleshooting Guide
Common Issues and Solutions
Verifier rejection: "invalid mem access"
Check pointer bounds, add null checks, use bpf_probe_read_*
High CPU usage from BPF program
Implement sampling, optimize hot paths, reduce map operations
Map full errors
Increase map size, use LRU maps, implement cleanup logic
Missing events
Check ring buffer size, verify attach points, test in isolation
Community Resources
The Future of eBPF
eBPF continues to evolve rapidly. Here's what's coming next and how to prepare for the future of kernel-level observability.
Upcoming Features
Kernel Developments
- • BPF Timers: Scheduled operations in kernel
- • Typed Pointers: Stronger type safety
- • Dynamic Linking: Modular BPF programs
- • Windows eBPF: Cross-platform support
- • Hardware Offload: SmartNIC acceleration
Ecosystem Growth
- • Standardization: Cross-vendor compatibility
- • Cloud Native: Kubernetes integration
- • AI/ML Integration: Smart monitoring
- • Edge Computing: IoT device monitoring
- • WebAssembly: WASM + eBPF convergence
Industry Trends
Get Started Today
Ready to revolutionize your monitoring?
Join thousands of teams using HyperObserve for production eBPF monitoring. Get complete observability in minutes, not months.
Conclusion
eBPF represents a paradigm shift in infrastructure monitoring. By moving observability into the kernel, we achieve unprecedented visibility with minimal overhead.
Key Takeaways
- 1eBPF enables zero-instrumentation monitoring with <5% overhead
- 2Production-safe by design with kernel verification
- 3Complete visibility across network, application, and infrastructure
- 4Language and framework agnostic monitoring
- 5The future of observability is kernel-level
Whether you're building your own eBPF programs or leveraging platforms like HyperObserve, now is the time to adopt this transformative technology. The monitoring revolution is here.